419 research outputs found

    A high-fat meal impairs muscle vasodilatation response to mental stress in humans with Glu27 β2-adrenoceptor polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forearm blood flow responses during mental stress are greater in individuals homozygous for the Glu27 allele. A high-fat meal is associated with impaired endothelium-dependent dilatation. We investigated the impact of high-fat ingestion on the muscle vasodilatory responses during mental stress in individuals with the Glu27 allele and those with the Gln27 allele of the β<sub>2</sub>-adrenoceptor gene.</p> <p>Methods</p> <p>A total of 162 preselected individuals were genotyped for the Glu27Gln β<sub>2</sub>-adrenoceptor polymorphism. Twenty-four individuals participated in the study. Fourteen were homozygous for the Gln27 allele (Gln27Gln, 40 ± 2 years; 64 ± 2 kg), and 10 were homozygous for the Glu27 allele (Glu27Glu, 40 ± 3 years; 65 ± 3 kg). Forearm blood flow was evaluated by venous occlusion plethysmography before and after ingestion of 62 g of fat.</p> <p>Results</p> <p>The high-fat meal caused no changes in baseline forearm vascular conductance (FVC, 2.2 ± 0.1 vs. 2.4 ± 0.2; <it>P </it>= 0.27, respectively), but reduced FVC responses to mental stress (1.5 ± 0.2 vs. 0.8 ± 0.2 units; <it>P </it>= 0.04). When volunteers were divided according to their genotypes, baseline FVC was not different between groups (Glu27Glu = 2.4 ± 0.1 vs. Gln27Gln = 2.1 ± 0.1 units; <it>P </it>= 0.08), but it was significantly greater in Glu27Glu individuals during mental stress (1.9 ± 0.4 vs. 1.0 ± 0.3 units; <it>P </it>= 0.04). High-fat intake eliminated the difference in FVC responses between Glu27Glu and Gln27Gln individuals (FVC, 1.3 ± 0.4 vs. 1.2 ± 0.4; <it>P </it>= 0.66, respectively).</p> <p>Conclusion</p> <p>These findings demonstrate that a high-fat meal impairs muscle vasodilatation responses to mental stress in humans. However, this reduction can be attributed to the presence of the homozygous Glu27 allele of the β<sub>2</sub>-adrenoceptor gene.</p

    Vascular endothelial growth factor and tryptase changes after chemoembolization in hepatocarcinoma patients

    Get PDF
    AIM: To evaluate vascular endothelial growth factor (VEGF) and tryptase in hepatocellular cancer (HCC) before and after trans-arterial chemoembolization (TACE). METHODS: VEGF and tryptase serum concentrations were assessed from 71 unresectable HCC patients before and after hepatic TACE performed by binding DC-Beads® to doxorubicin. VEGF levels were examined for each serum sample using the Quantikine Human VEGF-enzyme-linked immuno-absorbent assay (ELISA), whereas tryptase serum concentrations were assessed for each serum sample by means of fluoro-enzyme immunoassay (FEIA) using the Uni-CAP100 tool. Differences between serum VEGF and tryptase values before and after TACE were evaluated using Student t test. Person's correlation was used to assess the degree of association between the two variables. RESULTS: VEGF levels and serum tryptase in HCC patients before TACE had a mean value and standard deviation (SD) of 114.31 ± 79.58 pg/mL and 8.13 ± 3.61 μg/L, respectively. The mean levels and SD of VEGF levels and serum tryptase in HCC patients after TACE were 238.14 ± 109.41 pg/mL and 4.02 ± 3.03 μg/L. The changes between the mean values of concentration of VEGF and tryptase before treatment and after treatment was statistically significant (P &lt; 0.000231 and P &lt; 0.00124, by Wilcoxon-Mann-Whitney respectively). A significant correlation between VEGF levels before and after TACE and between tryptase levels before and after TACE was demonstrated (r = 0.68, P = 0.003; r = 0.84, P = 0.000 respectively). CONCLUSION: Our pilot results suggest that the higher serum VEGF levels and the lower tryptase levels following TACE may be potential biomarkers changing in response to therapy

    NGN2 mmRNA-Based Transcriptional Programming in Microfluidic Guides hiPSCs Toward Neural Fate With Multiple Identities

    Get PDF
    Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches. The ability of NGN2 mmRNA to instruct PSC fate change has not been thoroughly investigated yet. Here we aimed at understanding whether the use of an NGN2 mmRNA-based approach combined with a miniaturized system, which allows a higher transfection efficiency in a cost-effective system, is able to drive human induced PSCs (hiPSCs) toward the neuronal lineage. We show that NGN2 mRNA alone is able to induce cell fate conversion. Surprisingly, the outcome cell population accounts for multiple phenotypes along the neural development trajectory. We found that this mixed population is mainly constituted by neural stem cells (45% \ub1 18 PAX6 positive cells) and neurons (38% \ub1 8 \u3b2IIITUBULIN positive cells) only when NGN2 is delivered as mmRNA. On the other hand, when the delivery system is lentiviral-based, both providing a constant expression of NGN2 or only a transient pulse, the outcome differentiated population is formed by a clear majority of neurons (88% \ub1 1 \u3b2IIITUBULIN positive cells). Altogether, our data confirm the ability of NGN2 to induce neuralization in hiPSCs and opens a new point of view in respect to the delivery system method when it comes to transcriptional programming applications

    Intravital three-dimensional bioprinting

    Get PDF
    Fabrication of three-dimensional (3D) structures and functional tissues directly in live animals would enable minimally invasive surgical techniques for organ repair or reconstruction. Here, we show that 3D cell-laden photosensitive polymer hydrogels can be bioprinted across and within tissues of live mice, using bio-orthogonal two-photon cycloaddition and crosslinking of the polymers at wavelengths longer than 850 nm. Such intravital 3D bioprinting—which does not create by-products and takes advantage of commonly available multiphoton microscopes for the accurate positioning and orientation of the bioprinted structures into specific anatomical sites—enables the fabrication of complex structures inside tissues of live mice, including the dermis, skeletal muscle and brain. We also show that intravital 3D bioprinting of donor-muscle-derived stem cells under the epimysium of hindlimb muscle in mice leads to the de novo formation of myofibres in the mice. Intravital 3D bioprinting could serve as an in vivo alternative to conventional bioprinting

    Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.

    Get PDF
    Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio

    Intravital three-dimensional bioprinting

    Get PDF
    Fabrication of three-dimensional (3D) structures and functional tissues directly in live animals would enable minimally invasive surgical techniques for organ repair or reconstruction. Here, we show that 3D cell-laden photosensitive polymer hydrogels can be bioprinted across and within tissues of live mice, using bio-orthogonal two-photon cycloaddition and crosslinking of the polymers at wavelengths longer than 850 nm. Such intravital 3D bioprinting\u2014which does not create by-products and takes advantage of commonly available multiphoton microscopes for the accurate positioning and orientation of the bioprinted structures into specific anatomical sites\u2014enables the fabrication of complex structures inside tissues of live mice, including the dermis, skeletal muscle and brain. We also show that intravital 3D bioprinting of donor-muscle-derived stem cells under the epimysium of hindlimb muscle in mice leads to the de novo formation of myofibres in the mice. Intravital 3D bioprinting could serve as an in vivo alternative to conventional bioprinting
    • …
    corecore